Key

Evidence linked to PBB exposure
Weak evidence linked to PBB exposure
No evidence of association or link to PBB exposure
* Community Health Concern

For more details, please see our review of the scientific literature here:

https://ehp.niehs.nih.gov/doi/10.1289/EHP15012

Table 1. Long-term health findings for First-Generation cohort (people with direct exposure to PBB e.g. ate contaminated food or worked on contaminated farms or Velsicol Chemical)

Health Outcome	Decearch Findings
Health Outcome	Research Findings
Thyroid Function*	PBB was associated with increased risk of thyroid conditions, especially for those exposed before age 16 (Jacobson et al., 2017; Curtis et al., 2019b)
Breast Cancer*	People with higher PBB levels had an increased risk of breast cancer (Henderson et al., 2005; Terrell et al., 2016)
Digestive System Cancers (e.g. stomach, esophagus, liver, & pancreas)*	People with higher PBB levels had an increased risk of digestive system cancers (Hoque et al., 1998)
Lymphoma*	People with higher PBB levels had an increased risk for overall lymphoma (Hoque et al., 1998)
Rheumatoid Arthritis in Men	Men with higher levels of PBB had an increased risk of rheumatoid arthritis (Hood et al., 2023)
Menstrual Cycle	- Women with higher PBB levels and recent weight loss had shorter menstrual cycles with longer bleed length (Davis et al., 2005) - Women exposed to high levels of PBB in childhood had lower levels of estrogen and FSH during their menstrual cycle (Howards et al., 2019)
Abnormal Pap Smears	Women with higher PBB levels were more likely to report abnormal Pap smear results (Jamieson et al., 2011)
Rheumatoid Arthritis in Women	Women with higher levels of PBB had an increased risk of rheumatoid arthritis (Hood et al., 2023)

^{*}Community health concerns were compiled from 22 PBB community meetings held between 2011-2025 and questions asked during these meetings.

Health Outcome	Research Findings
Neurologic Autoimmune Disorders	Women with higher levels of PBB had an increased risk of neurologic autoimmune disorders (e.g. multiple sclerosis) (Hood et al., 2023)
Thyroid Autoimmune Disorders*	Women with higher levels of PBB had an increased risk of thyroid autoimmune disorders (e.g. Grave's disease and Hashimoto's disease) (Hood et al., 2023)
Diabetes*	No association was found between PBB exposure and Type 2 Diabetes (Vasiliu et al., 2006)
Menopause	No association was found between PBB exposure and age of menopause (Blanck et al., 2004)
Endometriosis	No association was found between PBB exposure and endometriosis (Hoffman et al., 2007)
Benign Breast Disease	No association was found between PBB exposure and benign breast disease (Kaiser et al., 2003)
Miscarriage*	No association was found between PBB exposure and risk for miscarriage (Small et al., 2007)
Infertility*	No association was found between PBB exposure and infertility in women (Neblett et al., 2020)
Hypertensive Pregnancy Disorders (e.g. gestational hypertension, pre-eclampsia, eclampsia)	No association was found between maternal PBB exposure and hypertensive disorders in pregnant women (Neblett, et al., 2020)
Gestational Diabetes	No association was found between maternal PBB exposure and gestational diabetes (Neblett et al., 2020)

Table 2. Health findings for second and third generation cohort (people born to parents who were exposed to PBB)

Health Outcome	Research Findings
	Babies born to men or women with high PBB levels
Birth Weight	were more likely to have a lower birth weight
	(Givens et al., 2007; Redmond et al., 2022)
	Daughters of women with high PBB levels had an
Miscarriage*	increased risk of miscarriage when they became
	pregnant as adults (Small et al., 2011)
	Female babies who were exposed to high PBB
Bone Development	levels while in utero had a higher 2D:4D digit ratio
	(which suggests PBB might have estrogenic effects
	for bone development) (Wainstock et al., 2016)

Health Outcome	Research Findings
Apgar Score	Babies born to mothers with high PBB levels had lower Apgar scores (a tool used to assess newborn health at birth) (Terrell et al., 2014)
Female Development	Daughters who were breast-fed by mothers with high PBB exposure were more likely to begin menstruating earlier (Blanck et al., 2000)
Menstrual Cycle	Women exposed to high levels of PBB while in-utero had increased progesterone levels (Barat et al., 2024)
Male Genitourinary Conditions	Sons of mothers with high PBB levels were more likely to report urinary and genital conditions such (e.g. hernia and hydrocele) (Small et al., 2009)
Male Growth & Development	Sons of mothers with high PBB levels were more likely to experience delayed puberty (Small et al., 2009)
Biomarkers of Aging	Studies examining how PBB might affect DNA function have suggested that there might be accelerated aging associated with PBB (Curtis et al., 2019a)
ADHD*	Observed a higher proportion of ADHD in females exposed but overall, no association with PBB level (Christensen et al., 2024)
Autism*	No association was found between PBB exposure and autism (Christensen et al., 2024)
Autoimmune Disorders*	No association was found between PBB exposure and self-reported autoimmune disorders (Hood et al., 2023)
Preterm birth	No association was found between maternal PBB exposure and risk of preterm birth (Neblett et al., 2020; Givens et al., 2007)
Birth Weight	No association was found between maternal PBB exposure and birth weight (Neblett et al., 2020)
Birth Defects	No association was found between maternal PBB exposure and birth defects (Neblett et al., 2020)
Female Height	No association was found between mothers' PBB levels and their daughters' height (Blanck et al., 2002)

Additional Ongoing Analyses:

- Cancer*
- Neurodegenerative disease mortality
- Cognitive decline
- Hypertension
- Joint disease and joint replacement*
- Mental health disorders*

References

Barat S, Hood RB, Terrell ML, Howards PP, Spencer JB, Wainstock T, Barton H, Pearson M, Kesner JS, Meadows JW, Marcus M, Gaskins AJ. In-utero exposure to polybrominated biphenyl (PBB) and menstrual cycle function in adulthood. Int J Hyg Environ Health. 2024 Mar;256:114297. doi: 10.1016/j.ijheh.2023.114297. Epub 2023 Dec 1. PMID: 38039561; PMCID: PMC10872753.

Blanck, H.M., et al., Time to menopause in relation to PBBs, PCBs, and smoking. Maturitas, 2004. 49(2): p. 97-106.

Blanck, H.M., et al., Growth in girls exposed in utero and postnatally to polybrominated biphenyls and polychlorinated biphenyls. Epidemiology, 2002. 13(2): p. 205-10.

Blanck, H.M., et al., Age at menarche and tanner stage in girls exposed in utero and postnatally to polybrominated biphenyl. Epidemiology, 2000. 11(6): p. 641-7.

Christensen, G.M., et al., Exploring autism spectrum disorder (ASD) and attention deficit disorder (ADD/ADHD) in children exposed to polybrominated biphenyl. Environmental Epidemiology, 2024. 8(2): p. 304.

Curtis, S.W., et al., Environmental exposure to polybrominated biphenyl (PBB) associates with an increased rate of biological aging. Aging (Albany NY), 2019a. 11(15): p. 5498-5517.

Curtis, S.W., et al., Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children. Environmental Health, 2019b. 18(1): p. 75.

Davis, S.I., et al., Menstrual function among women exposed to polybrominated biphenyls: a follow-up prevalence study. Environ Health, 2005. 4: p. 15.

Givens, M.L., et al., Maternal exposure to polybrominated and polychlorinated biphenyls: infant birth weight and gestational age. Chemosphere, 2007. 69(8): p. 1295-304.

Henderson, A.K., et al., Breast cancer among women exposed to polybrominated biphenyls. Epidemiology, 1995. 6(5): p. 544-6.

Hoffman, C.S., et al., Endometriosis among women exposed to polybrominated biphenyls. Ann Epidemiol, 2007. 17(7): p. 503-10.

Hood, R.B., et al., Polybrominated biphenyls (PBBs) and prevalence of autoimmune disorders among members of the Michigan PBB registry. Environ Res, 2023. 239(Pt 1): p. 117312.

Howards, P.P., et al., Polybrominated Biphenyl Exposure and Menstrual Cycle Function. Epidemiology, 2019. 30(5): p. 687-694.

Hoque, A., et al., Cancer among a Michigan cohort exposed to polybrominated biphenyls in 1973. Epidemiology, 1998. 9(4): p. 373-8.

Jacobson, M.H., et al., Serum Polybrominated Biphenyls (PBBs) and Polychlorinated Biphenyls (PCBs) and Thyroid Function among Michigan Adults Several Decades after the 1973-1974 PBB Contamination of Livestock Feed. Environmental health perspectives, 2017. 125(9): p. 097020-097020.

Jamieson, D.J., et al., Dietary exposure to brominated flame retardants and abnormal Pap test results. J Womens Health (Larchmt), 2011. 20(9): p. 1269-78.

Kaiser, R., et al., Polybrominated biphenyl exposure and benign breast disease in a cohort of US women. Ann Epidemiol, 2003. 13(1): p. 16-23.

Neblett, M.F., et al., Examining Reproductive Health Outcomes in Females Exposed to Polychlorinated Biphenyl and Polybrominated Biphenyl. Scientific Reports, 2020. 10(1): p. 3314.

Redmond, L.S., et al., Birth outcomes associated with paternal polybrominated and polychlorinated biphenyl exposure. Environ Res, 2022. 214(Pt 4): p. 114215.

Small, C.M., et al., Risk of spontaneous abortion among women exposed to polybrominated biphenyls. Environ Res, 2007. 105(2): p. 247-55.

Small, C.M., et al., Reproductive outcomes among women exposed to a brominated flame retardant in utero. Arch Environ Occup Health, 2011. 66(4): p. 201-8.

Small, C.M., et al., Maternal exposure to a brominated flame retardant and genitourinary conditions in male offspring. Environ Health Perspect, 2009. 117(7): p. 1175-9.

Small, C.M., et al., In utero exposure to a brominated flame retardant and male growth and development. Int J Child and Adolescent Health, 2009. 2(3).

Terrell, M.L., et al., Breast cancer among women in Michigan following exposure to brominated flame retardants. Occup Environ Med, 2016. 73(8): p. 564-7

Terrell, M.L., et al., Maternal exposure to brominated flame retardants and infant Apgar scores. Chemosphere, 2014. 118C: p. 178-186.

Vasiliu, O., et al., Polybrominated biphenyls, polychlorinated biphenyls, body weight, and incidence of adult-onset diabetes mellitus. Epidemiology, 2006. 17(4): p. 352-9.

Wainstock, T., et al., Exposure to PBB-153 and Digit Ratio. Early Human Development, 2016. 103: p. 33-35.